
RESEARCH

Clinical Oral Investigations          (2025) 29:233 
https://doi.org/10.1007/s00784-025-06306-4

Introduction

The preservation of bone quantity is crucial for the long-
term functionality of dental implants [1]. Unlike natural 
teeth, which are supported by the periodontal ligament, 
osseointegrated dental implants exhibit lower resilience and 
shock absorption capacity [2, 3]. When subjected to load-
ing, the stress applied on the dental implant is directly trans-
mitted to the surrounding bone, leading to bone remodeling 
around peri-implant [4]. Consequently, uneven stress distri-
bution of implant components can result in mechanical and 
biological complications of patients [5, 6].

For completely edentulous jaws, the ‘All-on four’ tech-
nique has gained widespread adoption among clinicians [7]. 
The “All-on-four” technique is based on screw-retained 
components, including straight and/or angulated multi-unit 
abutment (MUA) [8, 9]. The popularity of MUA in full 
arch implant restoration can be attributed to its ability to 
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Abstract
Objectives  Few studies have provided a detailed analysis of stress distribution on the components of multi-unit abutment 
(MUA)-implants complex, particularly the abutment screw and prosthetic screw, which are among the most fragile parts of 
the restoration. Our objective was to investigate the differences of stress distribution on the components of MUA-implants 
complex under varies loading conditions using finite element analysis.
Materials and methods  We constructed MUA-implant complexes with different abutment angulations (0°, 17°, and 30°). 
A static force of 200 N was applied along the axis of the prosthetic abutment, accompanied by varying lateral forces (0 N, 
30 N, and 100 N).
Results  When subjected to a 200 N axial load, implants with a 30° angulated abutment experienced nearly 2.5 times the 
stress (1185 MPa) compared to straight abutments (437 MPa). The maximum stress of the straight MUA-implant was 8 times 
higher under a 100 N lateral force (2389 MPa) compared to that without lateral force. Prosthetic screws suffered higher stress 
concentration than the abutment screw and stress was mostly located near the first thread of the prosthetic screw.
Conclusions  There is a distinct stress distribution pattern between the prosthetic screw and abutment screw, with the former 
experiencing higher stress concentration than the latter.
Clinical relevance  The present study indicates that prosthetic screws are more vulnerable to mechanical complications and 
cautions should be raised to balance biting force to minimize the risks of mechanical complications in patients with angu-
lated MUA-implants complex.
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completely eliminate the need for cement and compensate 
the restoration’s edge in cases of gingival height disparities, 
thus facilitating regular monitoring procedures [10, 11]. 
Additionally, the angulations of the MUA provide flexibil-
ity for patients with teeth misalignments or compromised 
jaw bone by offering 3–4 angle correction options [12]. 
However, compared with the cement-retained restoration, 
MUAs are more prone to mechanical failures, such as screw 
loosening or fracture, due to the lack of shock-absorbing 
cement [13].

Several studies have reported the influence of angulated 
abutments on mechanical stress. Liu et al. utilized finite ele-
ment analysis (FEA) to compare stress distribution among 
abutment groups with 0°, 17°, and 30° angulations [14]. 
Their findings indicated that increased abutment angula-
tion led to higher stress levels. In contrast, another FEA 
study examined stress distribution in abutments with 15°, 
20°, 25°, and 30° angulations and reported no clear correla-
tion between stress distribution and angulation [15]. Inter-
estingly, this study found that the 20° angulated abutment 
exhibited lower stress levels compared to both the 15° and 
30° angulated abutments. These conflicting results high-
light the need for further research to clarify the relationship 
between abutment angulation and stress distribution.

There are essentially two pieces of screw components (an 
abutment screw and a relatively smaller prosthetic screw) to 
tighten the transmucosal MUA abutment and crown. Armen-
tia et al. [16] observed that the prosthetic screw would be 
more vulnerable to mechanical problems, and Pjetursson 
et al. [17] reported a 10.8% abutment screw loosening rate 
after a 5-year follow-up. Notably, researchers have pointed 
out that the prosthetic screw of MUA is quite small, which 
further increases the risk of loosening or breakage [5]. How-
ever, few studies have specifically analyzed stress distribu-
tion of the abutment screw and prosthetic screw [18].

The masticatory forces induce axial forces and lateral 
force. Studies have highlighted the greater deterioration 
caused by the lateral force than axial forces [19, 20]. Rich-
ter et al. compared lateral and axial forces [21] and found 
that lateral force could generate higher stress on the bone-
implant interface, particularly on the neck of the implant. 
Another study conducted by Cozzolino et al. also reported 
that lateral loads caused greater deformations of cortical 
bone than axial biting forces [22]. An animal study observed 
that the lateral force could disrupt the osseointegration, even 
in implants that had already achieved osseointegration [23]. 
Hence, understanding the stress pattern of the MUA under 
lateral force is critical to ensuring the long-term success of 
the implants and the restoration. However, there is scarce 
information available to determine the impact of lateral 
force on MUA with different angulations, let al.one the 
prosthetic and abutment screw.

To simulate the “All-on-Four” concept, which utilizes 
both straight and angulated (17° and 30°) multi-unit abut-
ments (MUAs), we developed MUAs-implant complex with 
different angulations (0°, 17°, and 30°) using FEA [24]. FEA 
was chosen as the primary methodology because it allows 
for a detailed and controlled evaluation of stress distribu-
tion patterns under various loading conditions [6, 25, 26]. In 
this study, our objective was to investigate the differences in 
stress patterns among MUA with different angulations (0°, 
17°, and 30°) using FEA. Additionally, we compared the 
stress distribution of each component of the MUA-implant 
complex (including the MUA, implant, abutment screw, and 
prosthetic screw) under a 200 N static force along the pros-
thetic abutment axis, with varying lateral forces (0 N, 30 N, 
and 100 N).

Methods

3D reconstruction of the mandibular bone

The study protocol was designed in compliance with the 
Helsinki Declaration and approved by the ethical committee 
of the School and Hospital of Stomatology, Fujian Medical 
University (No. 2022053). A computed tomography exami-
nation was performed on a 35-year-old healthy male vol-
unteer with a healthy craniofacial structure and dentition 
after a medical history interview [27] and oral examination. 
Prior to participation, the volunteer provided informed con-
sent. The computed tomography files were then imported 
to Materialise Mimics Innovation Suite software (Materi-
alise, Belgium) and a section of the mandibular bone struc-
ture around the left first molar was mathematically filed. 
This model considered a cortical bone thickness of 2 mm 
surrounding the trabecular bone, simulating bone type II 
according to the Lekholm and Zarb classification [28].

Finite element model components and mesh 
generation

The geometric modeling of the MUA-implant complex was 
constructed based on the physical components and data 
provided by the manufacturer (Nobel Biocare, Gothenburg, 
Sweden). The complex consisted of a 4.3  mm × 10  mm 
NobelActive® implant, MUAs with a 3.5 mm collar height 
and various angulations (0°, 17°, and 30°), as well as the 
abutment screw, prosthetic screw, and prosthetic abutment. 
As demonstrated in previous studies, crown parameters, 
such as cusp inclination, occlusal contact distribution, con-
tour, and material, significantly influence stress distribution 
around dental implants [6, 29, 30]. The crown was not simu-
lated in this study to minimize the confounding factor of 
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crown designing. All components were meshed using com-
puter-aided engineering software (SolidWorks Simulation, 
SolidWorks Corporation, USA), as shown in Fig. 1A. The 
Young’s modulus and Poisson’s ratio for cortical bone, can-
cellous bone, and the implant-MUA complex were deter-
mined from previous studies and are summarized in Table 1 
[31, 32].

The geometric models are then imported into Hyper-
mesh software ((Altair Engineering, USA)) for meshing 
and assembled. The individual components are discretized 
to generate 4-noded 6-degrees of freedom tetrahedral ele-
ments. The convergence criterion was defined as a change 
of less than 6% in the maximum von Mises stress in the bone 
between successive mesh refinements, based on previous 
study [33]. To simulate the osseointegrated implants, a “fixed 
bond” condition was set between the bone and implants. 
The interface between screw components (prosthetic screw 
and abutment) and the surrounding components was simu-
lated with micro-sliding with a 0.5 friction coefficient, while 
the remaining interfaces were set as a contact condition. The 
finite element model of the implant with different multi-
abutment units consisted of a total of 31,713 − 35,502 nodes 
and 132,996 − 155,375 elements, with 13,901/52,897 nodes/
elements for the 0° MUA-implant complex, 12,944/48,843 
for the 17° MUA-implant complex, and 12,516/46,821 for 
the 30° MUA-implant complex.

Boundary conditions

After the assembly, the models were exported to finite ele-
ment software (ANSYS Workbench 15.0, Pennsylvania, 
USA) to perform the analysis through numeric calculus. A 
standard coordinate system was constructed with the x-axis 
as the mesial-distal direction along the bone segment, the 
y-axis as the labial-lingual direction perpendicular to the 
bone axis, and the z-axis as the superior-inferior direction 
along the prosthetic abutment axis. The mesial, lingual, and 
superior directions were defined as the + x, +y, and + z direc-
tions, respectively. Boundary conditions for all models were 
set as zero movement and rotation in all directions at the 
mesial and distal exterior surfaces of the bony segment.

Loading conditions

Axial and lateral forces were applied to the prosthetic abut-
ment, as shown in Fig. 1B. With the purpose to explore the 
impact of the lateral force and axial force, the MUA-implant 
complex was exposed to 3 loading conditions: condition A 
(200 N axial force with 0 N lateral force), condition B (200 N 
axial force with 30 N lateral force) and condition C (200 N 
axial force with 100 N lateral force). To closely inspect the 
stress distribution of the abutment and prosthetic screw, the 
screw was visually divided into upper, middle, and bottom 
parts, and the corresponding stress was recorded.

Table 1  Young’s modulus and Poisson’s ratio of the materials material 
[31, 32]
Materials Young’s modulus (MPa) Poisson’s ratio
Cortical bone 13,700 0.3
Trabecular bone 1370 0.3
MUA-implant complex 103,400 0.35

Fig. 1  The MUA-implant complex models with different abutment 
angulations (0°, 17°, and 30°). A, 3D model and detailed components 
of MUA- implant complex with different angulations. B, the axial and 
lateral loading applied on the meshed MUA-implant complex

 

1 3

Page 3 of 10    233 

Download from https://fastpapers.pages.dev



Clinical Oral Investigations          (2025) 29:233 

conditions within this study, stress of implant was mostly 
distributed in the neck of implant.

Under loading condition A, the implant with a 0° MUA 
exhibited a maximum stress of 437 MPa, while the implant 
with a 17° MUA and 30° MUA experienced maximum 
stresses of 843  MPa and 1185  MPa, respectively. Under 
loading condition B, the implant with a 30° MUA had the 
highest maximum stress (1422 MPa), followed by the 17° 
MUA (1092  MPa) and the 0° MUA (1034  MPa). Under 
loading condition C, the implant with a 0° MUA had the 
lowest maximum stress (2389 MPa). The implant with a 30° 
MUA experienced nearly 300 MPa higher stress than the 0° 
MUA implant.

Stress distribution of MUA

Figure 3 presents the stress distribution of the MUA with 
varies abutment angulation under different loading condi-
tions. Under loading condition A, the straight MUA exhib-
ited a lower maximum stress of 279 MPa compared to the 
17° MUA (320 MPa) and 30° MUA (515 MPa). When the 
lateral force increased to 30 N (condition B), the maximum 
stress of the 0° MUA dramatically increased to 753 MPa. 
Similarly, the stress in the 17° multi-unit-abutment group 
and 30° multi-unit-abutment group also increase to 869 MPa 
and 1120 MPa, respectively. With an axial force of 100 N, 
the maximum stress in the 0°, 17°, and 30° MUA increased 
to 1646 MPa, 1906 MPa, and 2113 MPa, respectively.

Stress distribution of the prosthetic abutment

Figure 4 illustrates the stress distribution of the prosthetic 
abutment. Compared with the angulated MUA, the straight 
MUA exhibited a more evenly stress distribution. With an 
increasing MUA angulation, the maximum stress value also 
increased. In the case of a 0 N lateral force, the maximum 
stress of the prosthetic abutment dramatically increased 
from 221 N in the straight MUA group to 1726 N in the 30° 
MUA group. When a lateral force was applied, the stress 
levels were higher. When subjected to a 100 N lateral force, 
the maximum stress in the 30° angulated MUA (2088 MPa) 
is almost 8 times higher than that in the 0° MUA (309 MPa).

Stress distribution of the screws

The stress distribution of the screws (abutment screw and 
prosthetic screw) under different loading conditions was 
presented in Fig. 5.

Results

Stress distribution of implants

The stress distribution of the implants with various MUA 
angulation under different loading conditions is exhibited 
in Fig. 2. It could be observed that no matter the loading 

Fig. 2  The stress distribution of the implant of the MUA-implant com-
plex models with different abutment angulation (0°, 17° and 30°). A, 
The stress distribution of implants under loading condition (A) B, The 
stress distribution of implants under loading condition (B) C, The 
stress distribution of implants under loading condition C
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part was slightly higher (1008 MPa and 1036 MPa, respec-
tively) compared to the straight MUA group (985 MPa).

Stress distribution of the prosthetic screws

For the prosthetic screw, the stress of angulated abut-
ment model was concentrated near the first thread region 
(Fig. 5A, B and C). Table 3 summarizes the results of the 
maximum stress on the upper, middle, and bottom parts of 
the prosthetic screw. In the straight MUA group, the maxi-
mum stress of the prosthetic screw was observed in the 
upper part, with the maximum stress of the MUA loaded 
with 100 N lateral force being higher than that with 30 N 
lateral force (496  MPa), followed by that without lateral 
force (265 MPa). In contrast, for the 17° MUA group, the 

Stress distribution of the abutment screws

Under axial loading, stress concentrated in the middle 
region (Fig. 5A). With the addition of lateral force, it can be 
observed from Fig. 5B and C that the upper region (screw 
head) of the angulated abutment screws experienced the 
highest stress.

Table  2 provides the detailed results of the maximum 
stress on the upper, middle, and bottom parts of the abut-
ment screw. Among the different loading conditions, the 
group subjected to 100  N lateral loading exhibited the 
highest maximum stress (985 MPa), followed by the group 
subjected to 30 N lateral loading (527 MPa), and the group 
subjected to 0 N lateral loading (130 MPa). In the angulated 
MUA group (17° and 30°), the maximum stress in the upper 

Fig. 3  The stress distribution of 
the MUA with varies abutment 
angulation under loading condi-
tion A, condition B and condition 
C
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and abutment screws [2, 18, 34]. Lanza et al. investigated the 
design of the framework in “All-on four” while the implant-
abutment connection has been simplified to one screw [35]. 
Turker el al. constructed the maxillary and mandibular mod-
els in accordance of the “All-on four” concept without iden-
tifying the screw type [36]. A study by Hajimiragha el at.in 
2014 compared the single-unit abutment with the multi-unit 
abutment, which almost close to the clinical situation [1]. 
However, because of the limitation of the numerical simula-
tion technique, the meshes could be more dedicate. In this 
study, we tried to numerically construct the MUA implant 
complex in line with the manufacture as much as possible 
and the “screw in screw” manner has been developed as 
Fig. 4.

Angulated abutments have been used to compensate for 
compromised anatomical conditions in patients. Although 
some clinical trials have reported acceptable performance 
with angulated screw-retained prostheses, there are concerns 
about the mechanical effects of off-axis loading and preload 
on the screw channel, which might affect screw stability and 
long-term success [37]. Kao et al. found that abutment angu-
lations up to 25 degrees increased peri-implant bone stress 
by 18% and micromotion levels by 30% [34]. Brosh and 
colleagues compared angled abutments with straight abut-
ments and found a 3-fold increase in compressive strain at 

major stress was concentrated in the middle part of the 
prosthetic screw, rather than the upper part. The maximum 
stress of the prosthetic screw loaded with 100 N lateral force 
(1428 MPa) was significantly higher than that loaded with 
30 N and 0 N lateral force (779 MPa and 471 MPa, respec-
tively). Similarly, in the 30° MUA group, the most stress 
was found in the middle part of the prosthetic screw. Com-
pared to the prosthetic screw loaded with lateral force, the 
prosthetic screw without lateral force exhibited much lower 
stress, peaking at only 429 MPa.

Discussion

In this study, we used finite element analysis to construct a 
three-dimensional model of each component in the MUA-
implant complex (0°, 17°, and 30°), including the prosthetic 
screw and abutment screw, which are among the most vul-
nerable parts in the ‘All-on-four’ restoration. The stress dis-
tribution of the component in the MUA-implant complex 
was compared under different loading conditions.

Even though numerous studies attempted to understand 
the mechanical behavior of the implant with MUA-implant 
complex by FEA, few studies simulated the MUA-implant 
complex with elaboration, especially the prosthetic screw 

Fig. 4  The stress distribution 
of the prosthetic abutment of 
the MUA-implant complex 
models with different abutment 
angulation (0°, 17° and 30°). 
A, The stress distribution of the 
prosthetic abutment under load-
ing condition (A) B, The stress 
distribution of the prosthetic 
abutment under loading condition 
(B) C, The stress distribution of 
the prosthetic abutment under 
loading condition C

 

1 3

  233   Page 6 of 10

Download from https://fastpapers.pages.dev



Clinical Oral Investigations          (2025) 29:233 

15° and a 4.4-fold increase at 25° angulated abutments [38]. 
In this study, we also observed that implants experienced 
higher stress with increasing abutment angulation. When 
subjected to a 200 N load along the long axis of the pros-
thetic abutment, implants with a 30° angulated abutment 
experienced nearly 2.5 times the stress (1185  MPa) com-
pared to straight abutments (437  MPa). These results can 
help explain the clinical phenomenon of increased marginal 
bone loss in implants with angulated abutments compared 
to those with straight abutments [39].

When subjected to lateral force, our study revealed a 
significant increase in the maximum stress of the implant, 
particularly in the implant neck,. Compared to the implant 
without lateral force, the maximum stress was eight times 
higher under a 100 N lateral force (2389 MPa). Similar find-
ings were reported by De Faria Almeida et al. [40], who 
observed amplified stress in bone tissue, implants, and pros-
thetic components under oblique loading conditions. Given 
that lateral force is an inevitable consequence of mastica-
tory loading [21, 25, 41], it is crucial to maintain controlled 
and balanced biting force to minimize the risks of biological 
and mechanical complications in patients undergoing ‘All-
on four’ treatment with angulated MUA anchoring systems 
[42, 43].

Long-term studies have consistently reported mechanical 
complications of screw-retained prostheses, such as screw 
loosening and fracture [3, 44, 45]. After analyzing screw 
failures in clinical practice, Katsavochristou et al. reported 
that the majority of screw fractures occurred at the screw 
body rather than the screw head [45]. This study found a 
different stress distribution pattern between the prosthetic 
screw and abutment screw. For the prosthetic screw, the 
stress of angulated abutment model was concentrated near 
the first thread region. For the abutment screw, there is 
greater possibility of fracture in the screw heads. However, 
it is important to note that the stress distribution of the both 
abutment and prosthetic screw were greatly influenced by 
the lateral force (Tables 2 and 3). Therefore, reducing lateral 
force is essential to lower the risks of screw loosening and 
fracture.

In this study, from the results of the maximum stress of 
the abutment screw and prosthetic screw in Tables 2 and 3, it 
could be apparently observed that the prosthetic screws suf-
fered higher stress concentration than the abutment screw. 
The maximum stress of the prosthetic screw loaded with 
100  N lateral force (1509  MPa) in 30° MUA group was 
greatly higher than that of the abutment screw (1036 MPa). 
In addition, the prosthetic screw being relatively smaller 

Fig. 5  The stress distribution of the screws (abutment screw and pros-
thetic screw). A, The stress distribution of screws under loading condi-
tion (A) B, The stress distribution of screws under loading condition 
(B) C, The stress distribution of screws under loading condition C

 

1 3

Page 7 of 10    233 

Download from https://fastpapers.pages.dev



Clinical Oral Investigations          (2025) 29:233 

2.	 Lateral forces significantly increase the maximum 
stress on the implant, particularly in the neck region of 
the implants with angulated MUA.

3.	 There is a distinct stress distribution pattern between the 
prosthetic screw and abutment screw, with the former 
experiencing higher stress concentration than the latter, 
indicating the importance of regular monitoring about 
the prosthetic screw integrity.
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